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1, Statement of the problem, We consider the problem of minimizing the
functional (see, for example, [1]) t

J= gfo (2) dt (.0)
0

Here x = (%, (t)s...,x,(¢)) is an n-dimensional vector whose variation
with respect to time 1s governed by a system of differential equations
expressed in vector form

dz [ dt = f (z,%) (1.2)

Here the control function u 1s an p-dimensional vector whose instan-
taneous values belong to some set ¢ 1in r-dimensional Euclidean space. The
set U 1s given by means of the inequality o(u,,...,u,) € m, where p(y,,
---,u,) 1s a continuously differentlable function. For the sake of defi-
niteness, we shall conslder the function g,(x) 1in (1.1) to be positive
everywhere except at x =0 .

The control function u(z) must be chosen so that the trajectory of the
system (1.2), beginning at the point x, at zero time, passes at some instant
t, > O through a prescribed point x, and so that at the same time the
functional (1.1) takes on 1ts minimum value over all such control functions u.

Most optimum-control problems are so formulated that the second point is
usually fixed, while the first takes on an arbitrary position. In what fol-
lows the first point (for the sake of definiteness, we shall consider this
the origin) 1s fixed and the second 1s chose arbltrariiy. To reduce the
usual problem to the one considered above without changling the time varia-
tion, it is sufficient to replace the system (1.2) and the functional (1.1),
respectively, by 0

de/dt = — § (z, u) , J = Kfn () dt (£.3)
_ﬂ‘
The control function u(t¢) and the trajectory x(¢) of problem (1.1) —
(1.2) correspond in this case to the control function u(~¢) and the trajec-

tory x(-t) of problem (1.3), and vice versa. The Bellman equation [2] for
problem (1.1) — (1.2) is of the form

min, (p, f(x, W) + fo (2) = 0, (wCU,p=0aJ]dx) (1.4)
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For problem (1.3) thls can be represented as

maxu (p1 - f(xv u)) - fo (x) = 0 (u - U) (1’5)

In (1.4) and (1.5) the function J(x,,...,x,) 1s the Bellman function for
the optimum problem and f

J(@y, o0 2y) = n‘inuS fo (z) dt (1.6)

0
The vector p = 3J/3x has the coordinates p,;=aJ / dx,...,p,, = 87 [ 0z,
and Expression (P, —f(x,u)) 1s the scalar product of the vector p an
- Flx,uj.
Let the problem under consideration be such that Equation (1.5), after
ellmlnation of the control function u from the maximization condition,
reduces to the form

Lz, p)=H (2, p) = fo (2) = — (p, f(z, u (2, p)) — fy () = 0 (1.7

and the functions u(x, p) and g(x, p) are sufficiently smooth functions
in some reglon § of variation of the varliables x and p Hereafter we
shall(use)the term "Bellman equation" for Equation (1.7), just as for Equa-
tion (1.5).

It is readily shown that the function g(x, p) must be a positive homo-
geneous function of first degree in the varlables p . We know that

S H e p, f =z u(z, -
Zpi a_ﬁi — Zpi (p, f (::;p? (=, P))) = Z pif;i (=, u (2, p))—
i=1 i=1 i=1
G 0 fz u (@, pY) By
- Epi ku Ouy op;
i=1 =1

(1.8)

But the sum
”
S 3 (p, J( =, u (=, p))) Fux
duy, op;

(i=1,...,n
k=1

vanishes, since (1.5) is maximized, and (1.8) therefore becomes the well-
known Euler formula. For the first-order partial differential Equation (1.7)
we set up the characteristic system of equations [3]. It will be of the form

dz; oL dp; oL & Ol u(zp)  gf,
=i, — euEn) g —g = e gy ta, (19
k=1

Condition (1.5) and the system of equations (1.9) may also be obtained
from the maximum principle by Pontriagin's method [1]..

We shall consider the functions F(x,x°) which have the following proper-
ties [4]: (a) the region of definition of the function g(x,x*) is a region
R in the 2n-dimensional space of the varlables x and x*, such that for
each point (x,x*) 1t also contains every point of the form (x, ox*), where
g>0; (b) the function F(x,x*) 1s sufficiently smooth; (cs the func-
tion p{x,x*) must be a positive homogeneous function of first degree in the
variables x°, that is to say, Equation pm{x, ox") = oF(x,x*) holds for
every point (x,x’) in A and for all ¢ > O

Let us now try to find é function F(x,x°) such that, besides the above
properties, it satisfies the following condition. Using the function
7(x,x*), we set up the functional

J = RF (z, ) dt (1.10)
g
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and consider the problem of minimizing this functional over all curves (
passing through the origin and through some point x , i.e. the simplest
varlational problem in parametric form. We shall require that the extremals
of the problem (1.10) colnclde with the extremal of the optim problem
(1.3). A sufficient condition for this is that the Euler equations for
problem (1.10), when written in canonical form, colncide with Equations
(1.9) and that the additional condition imposed on the choice of the para-
meter of the varlational problem (1.10), after the introduction of the canoni-
cal variables, assume the form (1.7). Thus, after the function F(x, x*) has
been found, the optimum control problem {1.3) reduces to the simplest prob-
lem of the calculus of variatlions in parametric form.

2. In (4] a method 1s shown for finding the Hamilton function and con-
structing a system of canonlcal equations for *he varlational problem in
parametric form (1.10). By slightly modifying and expanding the reasoning
used in [4], we can find a method for determini the function p(x, x°*) if
we know the form of the function I (x, p) from (1.7). Considering problem
(1.10), we introduce the function

. \ . F (l‘s 1‘)
G, 2, 1) == F (£, 2) - l<—————— ) 2
(e, ) + G — ¢ 2.1)
Let us consider the Legendre transformation [5) using the varlables
%% ..., x,°, 1 for the functlon G(x, »*, 2
l F
=G = F (1 —————) , = G, = ——— — 2.2
P x F x + fo (@) A G, 7 1 (2.2)
If the Jacobian of the transformation (2.2)
” s ’ FI
24y x"xn" x,*
(f()(x) + l)‘n—l -” ....... , s s e ’.
4= [fo (@) 1™ Xt Flapag Fay 2.3
’x‘. F'xn- 0

1s non-zero in some region R of the varlables x, x* and for |1| <1,
then Formulas (2.2) can be inverted.

It should be noted that the requirement that the determinant 4 be non-
zero imposes an additional condition on the function F(x, x°) . Thus, we
know that the class of functions F(x, x') 3includes no functions for which
the determinant 4 vanilshes, for example, linear functions in the variables
X, s ey Xyt

Let the following condition hold from (2.2):
z; = Q;(z, p, M), Il=L(z,p N (2.4)

The function &(x,p,\), the dual of the function &@(x, x*, 1) under the
Legendre transformation, has the form

@ (z) b At) :l: in.Pi + I — G]x‘i.zoi. i=L _
i=1
—_—[ EIi'G'xi’"l‘ I(%——i )__ G:'xi-=Qi- I=L Lo 41 .
i=1

In deriving (2.5) we used the property of homogeneity of the function
F(x, x*) . Since the Legendre transformation is involutory, it follows that
by applying this transformation to the function ¢(x, P, A we arrive at
the variables x', 7 and the function @(x, x°, 1} . The varilables x® will
be related to P and A , if we use the function 3 (x, D ) , as follows:

oD 4L Yy

. aL
2= g = op M D l=gz—=L+ 3+ 1) (2.6)
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In order to find the function @(x, x°*, 1) we must invert Formulas (2.6).
A sufficient condition for this 1s that the Jacoblan 4 of the transforma-
tion {2.6) which, as wlll be explained later, is equal to the determinant

L N r

y 2y P10 Pr
B ne .”. e e e .” . ) .
A=Q(+1) A Z N 2.7)
Ly oo Ip 0

be non-zero in some region § of varlation of varlables x, P and for

lxl < 1 . It should be noted that the requirement that A be non-zero is
an important additiondl condition which restricts the class of functions
L(x, p) under consideration, and hence the class of problems under consider-
ation as well. Comparing the last equations of (2.4§ and (2.6), we can con-
vince ourselves that 3z/d =0 for |A| <1, so that r 1s independent
of A . To find the other properties of the function [1(x, p) , we shall
consider Formula

od & IL
\
2\ Pip, = A Pijp, 4 F 1 2.8)
i=1 i=1

On the other hand,

n n n

8@ L T=Q4 <, [ \]xi=%, =L
Zpia—}r[Zm] =[Zn’”in¢' (“rﬁ)]
i=A i=:] i=]1

Finally, using the property of homogeneity of the function 7lx, x°*) and
the last equation in (2.2), we find, that

T )
Dpigy, = L+ f) A+ 1) 2.9)

i=1

From Equations (2.8) and (2.9) it follows that

o oL
APigp =Lt 1 (2.10)

1=1

and this equatlon indicates that [ + °(x) 1s a positive homogeneous func-
tion of the first degree in the variables p . Conversely, if 1(x, p) has
the above properties, i.e. if the function 1 + f, 1s a positlve homogeneous
function of the variables » and 7 1s independent of ) , then by using
L to construct the function &(x, p, A) = L(x, P) (A + 1) and applying to
$(x, P, \) the Legendre transformation with respect to the variables P

and 1\ , we obtain the function G{(x, x*, 1) . The function F(x, x°) ,
found by means of G(x, x*, 1) using Formula

G+ 1
F(z, z) = 1°—f(ﬂf—’7—) (2.11)

will be a positive homogeneous functlion of ihe first degree in the variables
x* and will be independent of 1 . This statement may be derived by a reason-
ing similar to that applied in deriving the propertles of the furction [

In this process we also find

F(z, 2y = fo () (1 + A (z, ¥)) (242

where Alx, x*) 2s the variable A found from (2.6) and independent of .

If we assume, furthermore, that the function [(x, p), which is the left-
hand side of the Bellman Equation (1.7), has a non-zero determinant

A+ DT
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it willl satisfy all of the above conditions, As has been explained , if we
know 7(x, P), we can find the integrand g{x, x') , of some parametric-form
variational problem {1.10). Selecting the parameter ¢ along the extremals
of problem {1.10) so as to satisfy the equality F{x, x*) = 7,{x) , we make
the parameter X\ in the transformations (2.2) vanish. Set ] = O , I also
vanlshes. Repeating exactly the same reasoning as is found in [4], p. 160,
we can convince ourselves that to each extremal of problem (1.10) for which
the parameter ¢ 1s so chosen that #(x, x*) = f,(x) along the extremal,
there corresponds a solution x{z), pég) of the characteristic system of
equations {1.9) along which Equation {1.7) 1s satisfied. The converse 1is
also true. It should be ncted that the condltion of non-zero determinants

d and A may be modified somewhat.

First of all, by virtue of Equation g + & = 1 {see [5]), 1t i1s sufficient
to require one of these two Jacoblans to be non-zero. Secondly, this con-
dition along the extremals 1is egqulvalent to the conditlon that the matrix

HFX{”%,” (correspondingly HLP!;y”::”]7m p)ﬂ)
be of rank n — 1 . This may be shown just as in Theorem £3.1 of [4]. To
prove this, in the first case, we must use the conditlon that the function

F o= 11]7;; + 1:nl”xn,:= fo (2)

does not vanish along the extremals, and in the second case, the condition
that the functlon

I (w, p) = p 8H | dpy4- . .. -1~ pOH [ dp,

does not vanish; by virtue of Equation (1.7), which 1s satisfied along the
extremals, this function is also non-zerc. Eguatlion (1.7}, which is the
Bellman equation of the optimum problem 1.3), will at the same time be the
Hamilton-Jacobi eguation of the problem 1.105. Thus, the function . ,
which 1s the geodesic of the problem (1.10), coincides with Bellman function
of the problem (1.3).

3., Let us consider briefly whal result can be gained in the study of
individual optimum control problems by this reduction to the simplest problem
of the calculus of variation in parametric form. For the approximate calcu-
lation of optimum trajectories and of the Bellman functlon, a knowledge of
the function #{x, x'f enables us to apply & number of direct methods of
calculus of variations. For the approximate determination of curves mini-
mizing the functional{l.10}, we evidently need not confine ourselves tc the
parametrization represented by condition

Flz, &)~ o (@) (1)

since the functioaal {1.10) is independent of the cholce of parametrization.
The extremals which have been determined approximately will approximate the
optimum trajectories in the phase gpace X , but in general they cannot be
considered approximate optimum trajectories, since when a direct method 1a
used, the selected parameter will not, as a rule, coincide with time ¢ .
However, we can always introduce linto the approximate curves a parameter
satisfyling condition {(3.1). For example, suppose tnat when direct methods
are used the parameter selected 1s the arc length ¢ and the approximate
minimal is found in the form xﬂ(S% 0 < s<s$. We shall find the function
Sétg defining the parameter s as a function of time ¢ . The function
a(¢) must satisfy Equation

Fzy (s (0), =) (5(0)) = fo (o (s () 3.2y

or (since » 18 homogeneous in the derivatives x') Equation

F (x, (s}, ;) () = fo (=, (s ) (3.3)
Noting that +({s,} must be zero, we find the function t{s) from (3.3}
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B SS'F(%(S), = ) .
A R AN CTR (r.4)

The desired function g(¢) is found as the inverse of the function +¢(g).
Thus, the approximate optimum trajectories wx,(¢) = x,(a(t)) are now known.
This, in general, enables us to find the approximate optimum control func-
tions. The Bellman function, which has been found approximately in some
reglon of the phase space XY as

min, SF (z, ') dt (3.9

C

makes possible an approximate synthesis of the optimum control problem in
this region. Conversion of the optimum control problem into the simplest
variational problem can be very useful. In particular, it enables us to use
the sufficlent conditions of problem {1.10) in establishing the optimum
capacity of the extremals. The existence of specific differential properties
of the function p(x, x*) indicates definite differential properties in the
extremals [4] of the function j(x,,..., x,), and hence the optimum trajec-
tories and control functions.

We should also point out the importance of the fact that the function
#(x, x*) 1s a positive definite function for any x° in some region » of
the phase space Y including the orlgin. In this case the function J(x,..
<e.s x,), equal to (3.5), will be positive definite in the region p and
will satisfy the Bellman equation (1.7). Equation (1.7) indicates that the
function J 1s the Liapunov function for the original control system con-
sidered (1.2) i1f, instead of the control functions y , we substitute the
function u(x, 47/ dx) from (1.7) into the right-hand part of the system
(1.2). 1t follows from this that every state of the region D 1s control-
lable [6], and an estimate from below can be obtained for the controllability
region of problem (1.1) — (1.2).

4, As an example, we clite a problem studied by Krasovskii [7]. In this
problem the system of equations (1.2) is of the form

dr/ dt = Az -+ Bu (4.1)

where 4 and pB are p-dimensional matrices with constant coefficients, »5
being a nonsingular metrix and y an p-dimensional control vector. The
control reglon ¢ 1is a unit sphere, i.e. the control function y = (u,...,uJ
satisfies at any instant of time condition

(u, w) = ug® + oo+ w2 <1 (4.2)

Krasovskii considered the problem from the viewpolnt of speed of action,
i.e. in (1.1) the function f,(x) = 1. All subsequent calculations are carried
out without change if, instead of (4.1), we consider the system

dr jdt = f(z) + B (2) u (4.3)

where B(x) 1is an n-dimensional nonsingular matrix whose coefficients depend
on the phase coordinates. Equation (1.5) for problem (1.1) — (4.1) is of the

form
maxu (p, —Axz — Bu) — fy (z) = 0 ((u, W) << 1) (5.4)

From the maximization condition (4.4) we can find the control function y
as a vector function of the variables x and p and obtaln a first-order
partial differential equation independent of y , as was done in [7]; we obtain

B*;
ey (4.5)
V ((BB*p, p)

Substituting this control function into (4.%) and designating the matix
BB* as T , we find an equatlon of the type (1.7)
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Liz, p) = — (p, Az) + V' (T, p, p) — fo (2) =0 (4.6)
For the problem under conslderation Equations(2.6) become
i . r ——
v = (waT;,—(?;—,—j)(xH), =— (AN + VIR, P —fo@ (&7

In order to find the function #(x, x°*) 1t 1s sufficlent to express A+ 1
in.terms of the varlables x and x°' from (%.7). Rewriting the first
n~-equations from (4.7) in two ways, ye obtaln

_x __Ip M P
;v+1+Ax = .V-m. 7~+1+r1Ax—V(1’p,p) (4.8)

By pailrwlse scalar multiplication of the right-hand and left-hand parts
of these equatlons, we obtain

s .
(,%ipu I Az, ij—pu Az ) —1 (4.9)

From thils quadratic equation we find the root A + 1 satlsfying the prob-
lem and then find the function #(x, x*) by Formula (2.12)

for 1 — (I Az, Ax) 0

(I, Az) + V i, Az): + (T2, ) [1 — (Il Az, A2)]
1 — (It Az, Az)

F oz, x) = fy ()

(4.10)
for 4 — (I1Az, Az) =0

, o fo@m(Ita,x)

F oz, 2’) = — 2 (17, A2) (4.11)
Since the function pF{x, x') 1s positive definite for any x° 1if

1— ('t Az, Ax) > 0,

it follows that the region of controllability in any case includes the inte-
rior of the ellipsoid whose equation 1s (F"'4x, Ax) = 1 . The matrix 4 is
here assumed to be nonsingular. We may 'point out the following geometrical
interpretations of the optimum curves of this problem: within the elllpsolid
(r=4x, Ax) = 1 , the optimum trajectorles will be the ge>desics of Finsler-
ian geometry ([ 8], chapter 10).

For the problem (1.1) to (%.3), with f(z) =0 in (%.3), we have the
function e
Fz,z) =V (C () z,x)

where ((x) is the matrix of the positive definite quadratic form in x*

In this case the optimum trajectories are the geodesics of Riemannian geo-
metry.

The author 1s grateful to E.A,Barbashin for hils comments on the results
of this article.
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