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oi thr problem. We consider the problem of minimizing the 
for example, [1]) !I 

(1.1) 

Here x = (x,(t) ,...,x.(t)) is an n-dlm~nsional vector whose variation 
with respect to time is governed by a system of differential equations 
expressed In vector form 

dx ldt = f c5,Luj (1.2) 

Here the control function u Is an r-dimensional vector whose Instan- 
taneous values belong to some set U in r-dimensional Euclidean space. The 
set U Is given by means of the Inequality c(u,,...,ur) 6 m, where p(u,, 
. . ..u.) Is a continuously differentiable function. For the sake of defl- 
nlteness, we shall consider the function J,(x) in (1.1) to be positive 
everywhere except at x=0. 

The control function u(t) must be chosen so that the trajectory of the 
system (1.2), beginning at the point xc, at zero time, passes at some Instant 
t, > 0 through a prescribed point X, and so that at the same time the 
functional (1.1) takes on Its minimum value over all such control functions u. 

Most optimum-control problems are so formulated that the second point is 
usually fixed, while the first takes on an arbitrary position. In what fol- 
lows the first point (for the sake of definiteness, we shall consider this 
the origin) Is fixed and the second Is chose arbitrariiy. To reduce the 
usual problem to the one considered above without changing the time varia- 
tion, it is sufficient to replace the system (1.2) and the functional (l.l), 
respectively, by 0 

dx i dt = - f (r, u) , J -= _i’ f. (:T) dt c (1.3) 

The control function u(t) and the trajectory ‘n(t) of problem (1.1) - 
(1.2) correspond In this case to the control function u(-t) and the trajec- 
tory x(-t) of problem (1.3), and vice 
problem (1.1) - (1.2) is of.the form 

min, (P, f (5, 4) + f. (4 = 0, 

versa. Tine Bellman equation [2] for 

460 

(11 C U, p .= aJ I ax) (1.4) 
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For problem (1.3) this can be represented as 

max, (P, - 1(x, 4) - f. (4 = 0 (u c u) (1.5) 

In (1.4) and (1.5) the function J(z,,...,x, ) Is the Bellman function for 
the optimum problem and 

t1 

J (xi, . . ., x,,) = nin, f0 (z) dt 
s (1.6) 

The vector p = &r/ax has the coordinkes pl=aJlaxl...,p = 8J/ax 
and Expression (P, -_f(n,u)) Is the scalar product of the vec&r p dn' an 
- P(n,u). 

Let the problem under consideration be such that Equation (1.5), after 
elimination of the control function u from the maxlmlzatlon condltlon, 
reduces to the form 

L (x, P) = H (2, P) - fo (4 = - (PI f(x, u (x, P))) - fe (4 = 0 (1.7) 

and the functions L((x, p) and H(n, p) are sufficiently smooth functions 
in some region S of variation of the variables x snd p . Hereafter we 
shall use the term "Bellman equation" 
tion (1.5). 

for Equation (1.7), just as for Equa- 

It is readily shown that the function x(x, p) must be a poqitlve homo- 
geneous function of first degree In the variables p . We know that 

i; Pi g = -i Pr a(p, f (TpU (xl p))) = - 5 Pifi (x, u (x, p))- 

i=l 1 i=l i 
i=l 

-Ii ;1 a (PI f( Xr u (2, p),) auk 

pi y 
- 

i=l k=l 
aUk 8Pi 

(1.8) 

But the sum 

r a (P, I( 2‘3 u (5, p))) 8% 
2 L3U, aPi 

k=l 

(i== 1 , . . .: n) 

vanishes, since (1.5) Is maximized, and (1.8) therefore becomes the well- 
known Euler formula. For the first-order partial differential Equation (1.7) 
we set up the characteristic system of equations [3]. It will be of the form 

dxi aL 
?I 

-___ 
& - api - - fdx, u lx, P)) 

dpi 
- - -e = x pk 

af,(x* u (x, d) 
dt - 

ax 

k=l 
i 

Condition (1.5) and the system cf equations (1.9) may also be obtained 
from the maximum principle by Pontrlagln's method [l].. 

We shall consider the functions F(x,r') which have the following proper- 
ties [4]: (a) the region of definition of the function F(x,x') is a region 
F in the &-dimensional space of the variables x and x*, such that for 
each point (X,X*) It also contains every point of the form (x OX*), where 
0'0; (b) the function F(x,x*) Is sufficiently smooth; (cl the func- 
tion F(x,x') must be a positive homogeneous function of first degree In the 

that is to say, Equation F(r, ox') = &x,x') holds for 
In R and for all s > 0 . 

Let us now try to find a function F(x,x') such that, besides the above 
properties, It satisfies the following condition. Using the function 
J&,X'), we Set up the functional 

J = \F (x, x’) dt (1.10) 

‘i: 
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and consider the problem of minimizing this functional over all curves C 
passing through the origin and through some point x 
variational problem in parametric form. 

i.e. the simplest 
We shall reqhlre that the extremals 

of the problem (1.10) coincide with the extremal of the optlm 
A sufficient condition for this Is that the Euler equa Ions 9 

problem 
for 

when wrltten in canonical form, coincide with Equations 
additional condition Imposed on the choice of the para- 

meter of the variational problem (l.lO), after the Introduction of the canonl- 
&variables, assume the form (1.7). Thus, after the function F(x, x*) has 
been found, the optimum control problem (1.3) reduces to the simplest prob- 
lem of the calculus of variations in parametric form. 

2, In [4] a method Is shown for finding the Hamilton function and con- 
structing a system of canonical equations for 
parametric form (1.10). 

the variational problem in 

used In [4], 
By slightly modifying and expanding the reasoning 

we can find a method for determini 
we know the form of the function ~(x, p) from 
(l.lO), 

Y 
the function ~(r, x') if 
1.7). Considering problem 

we Introduce the function 

G (2, x’, lj =-: F (8, 5’) --/- 1 (Fw _ I) 

Let us consider the Legendre transformation [5] using the variables 
. x, , . . . , 5, ‘, 1 for the function G(x, a', 2) 

pi = G’ = F’ 
Xi’ Xi’ 

h = G,’ == 6) - 1 
If the Jacobian of the transformation (2.2) 

(3.1) 

(2.2) 

(2.31 

Is non-zero In some region R of the variables X, X* and for 
then Formulas (2.2) can be inverted. 

111 < 1, 

It should be noted that the requirement that the determinant d be non- 
zero lmooses an additional condition on the function F(X. x.1 . Thus. we 
know that the class of functions F(x, n*) includes ni‘fkctions for which 
the determinant d vanishes, for example, linear functions In the variables . . 
x, , .-., x, n 

Let the following condition hold from (2.2): 

xi' = Qi (r, P, A), 1 = L (2, P, A) (2.4) 

The function +(x,p,A), the dual of the function 0(x, x*, I) under the 
Legendre transformation, has the form 

In deriving (2.5) we used the property of homogeneity of the function 
F(Z, x') . Since the Legendre transformation Is lnvolutor It follows that 
by applying this transformation to the function ((x, P, h we arrive at 
the variables x', 1 and the function 0(x, x', 1) . The variables x'wlll 
be related to p and h , If we use the function 4(x, p, h) , as follows: 

am BL a@ dL 
X’i=api=zJpi(h+ 11, 2=z=L-ta&-(a+1) 
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In order to find the function G(z, r*, 1) we must Invert Formulas (2.6). 
A sufficient condition for this Is that the Jacobian A of the transforma- 
tion (2.6) which, as will be explained later, is equal to the determinant 

L” 
PlPl - * - L” LIPI P1Pn 

A = (A -/- I)‘- 
. . . . . . . . . . . . 1 

(2.7) 

be non-zero In some region S of variation of variables X, P and for 
1x1 < 1 . It should be noted that the requirement that A be non-zero Is 
an important additional condition which restricts the class of functions 
L(n, p) under consideration, and hence the class of roblems under conslder- 
atlon as well. Comparing the last equations of (2.4 P and (2.6), we can con- 
v$nc," ourselves that aL/ax = 0 for 1x1 < 1 , so that L Is Independent 

. To find the other properties of the function L(X, p) , we shall 
consider Formula 

(2.8) 

On the other hand, 

i_lP~~=[~pili.]ii.=Qi=[i]Ti.Fli. (1+~)1"i="i~'" 

i=3 i-1 i=l 

Finally, using the pro erty of homogeneity of the function F(n, x.‘) and 
the last equation In (2.2 P , we find, that 

-jpi t$ = (L + fo) (a -I- 1) 
i=l 

From Equations (2.8) and (2.9) It follows that 

&;$,=L+ !I, 
i=1 

i 

(2.9) 

and this equation Indicates that L + (,(X) 1 s a positive homogeneous func- 
tion of the first degree In the varlab es P . Conversely, If L(X, p) has 
the above properties; I.e. If the function -L + I0 1s a pbsitive homogeneous 
function of the variables P and L 
L to construct the function +(x, p, 

1s Independent of 1 , then by using 
A) = L(X, P) (1 + 1) and aPPlYlrig to 

@(x, p, A) the Legendre transformation with respect to the variables P 
and A we obtain the function 0(x, x', 1) . 
found bi means of G(r, x*, 1) using Formula 

The function F(x, x') , 

(2.11) 

will be a positive homogeneous function of the first degree In the variables 
X. and will be Independent of 1 . This statement may be derived by a reason- 
ing similar to that applied in deriving the properties of the furctlon L . 
In this process we also find 

F (z, x’).= f,, (z) (2 + A (x, T’)) (2.12' 

where A.(x, .r*) is the variable A found from (2.6) and Independent of I. 

If we assume, furthermore, that the function ~(x, p), which is the left- 
hand side of the Bellman Equation (1.7), has a non-zero determinant 

A (h + i)'+ 
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it will satisfy all of the above conditions, As has been explained , if we 
know ~(2, P), we can find the integrand F(X, x’) 
variational problem (1.10). 

of some parametric-form 
Selecting the parametec t along the extrenals 

of problem (1.10) so as to satisfy the equality Ffn, x*) 
the parameter X in the transformations (2.2) vanish. 

= f*(x) , iz’e make 
Set 1 = 0 also 

vanishes. Repeating exactly the sane reasoning as is found in [4],‘p! 160 
we can convince ourselves that to of problem (1.10) for whlci 
the parameter t, is so chosen that f0 (I) along the extrenal, 
there corresponds a solution 
equations (1.9) along which 

characteristic system of 
is satisfied. The converse is 

also true. It should be noted that the condition of non-zero determinants 
d and n nay be modified somewhat. 

First of all, by virtue of Equation d * A = 1 (see [r]), it is sufficient 
to require one of these two Jacobians to be non-zero. Secondly, this con- 
dition along the extrenals is equivalent to the condition that the matrix 

jjF,,i.“X.. j! (correwondh3lY ij L,,,” 
I 1 ?vj II = II H,i”pj iI ) 

be of rank +L - 1 . This nay be shown just as in Theorem 43.1 of [ 41. To 
prove this, in the first case, we must use the condition that the function 

does not vanish along the extrenals, &ci in the second case, the condition 
that the function 

does not vanish; 
extremals, 

by virtue of Equation (1.7), which is sati;;:;; ;lohg the 
this function is also non-zero. s the 

Bellman equation of the optinun problem 
1,3yation (1.7), 

i I 
will at the same tine be the 

Xanilton-Jacobi equation of the ploblen 1.10 . Thus, the function .T , 
which is the geodesic of the problem (l.lO), coincides with Bellman f)nction 
of the problem (1.3). 

3. Let us consider briefly what result can be gained in the study of 
individual optimum control problems by this reduction to the s.implest problen 
of the calculus of variation in parametric form. For the approximate calcu- 
lation of optimum tra ectories and of the Bellman function, a knowledge of 
the function F(x, X’ 3 enables us to apply a number of clil,ect methods of 
calculus of variations. For the approximate determination of curves mlni- 
nizing the functional(l.lO), we evidently need not confine ourselves tc the 
parametrization represented by condition 

P (Z, c’) -- lo (X) (Xi) 

since the functio.lai (1.10) is independent of the choice nf pal%anet:,ization. 
The extrenals which have been determined approximately Wili app!,oxinate the 
optimum trajectories in the phase space x , but in general they cannot be 
considered approximate optimum trajectories, since when a direct method i:; 
used, the selected parameter will not, as a ~,ulr, coincide with tine t I 
However, we can always introduce into the approximate curves a parameter 
satisfying condition (3.1). For example, suppose tncit when direct methods 
are used the parameter selected is the arc length s and the approximate 
minimal is found in the form Zli (S), 0 \(: S < S:. We shall find the function 
s t defining the parameter s as a function of time t . 

[I 
The function 

e t must satisfy Equation 

F (z, is U)), :cnlr (.y Cl))) fo (:rn (s (4)) {?i.Z!) 

or (since .p is homogeneous in the derivatives x’) Equation 

F (-c~ (4, z,l’ (s)) 2 lo (Z,! (s)) t&’ (:+.:i) 

Noting that t,(sl) must be zero, we find the function t(s) from (3.3) 
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t (s) = 
‘?F (:r,, (sj, xn’_(s)) 

! . fe 6% (4) ds 
s 

(3.4) 

The desired function s(t) is found as the inverse of the function t(s). 
Thus, the approximate optimum trajectories x,(t) = ~.(s(t)) are now known. 
This, In general, enables us to find the approximate optimum control func- 
tions . The Bellman function, which has been found approximately In some 
region of the phase space X as 

min, F (x, I’) dt 
s (3.5) 

makes possible an approximate synthesis of the optimum control problem in 
this region. Conversion of the optimum control problem into the simplest 
variational problem can be very useful. In particular, It enables us to use 
the sufficient conditions of problem (1.10) in establishing the optimum 
capacity of the extremals. The existence of specific differential properties 
of the function ~(x, n’) indicates definite differential properties in the 
extremals [4] of the function J(X, , . . . , X, ), and hence the optimum trajec- 
tories and control functions. 

We should also point out the importance of the fact that the function 
~(x, x’) is a positive definite function for any r’ In some region ZJ of 
the phase space x Including the origin. 

x ), equal to (3.5), 
In this case the function J(x,.. 

will be positive definite in the region D 
iii1 sitisfy the Bellman equation (1.7). 

and 
Equation (1.7) indicates that the 

function J is the Liapunov function for the original control system con- 
sidered (1.2) if, Instead of the control factions n we substitute the 
function U(Y, dJ/dx) from (1.7) Into the right-hand iart of the system 
(1.2). It follows from this that every state of the region D is control- 
lable [6], and an estimate from below can be obtained for the controllability 
region of problem (1.1) - (1.2). 

4. As an example, we cite a problem studied by Krasovskii [7]. In this 
problem the system of equations (1.2) is of the form 

dx/dt=Ax+ Bu (4.1) 

where A and B are n-dimensional matrices with constant coefficients, B 
being a nonsingular metrix and u an n-dimensional control vector. The 
control region U is a unit sphere, I.e. the control function u = (u,...,~,) 
satisfies at any instant of time condition 

(u, a.) = zL12 + . . . . + u,2 c-;: 1 (4.2) 

KrasovsMl considered the problem from the viewpoint of speed of action, 
i.e. in (1.1) the function fn (x) -. 1. All subsequent calculations are carried 
out without change If, instead of (4.1), we consider the system 

dx i dt == f (x) f B (x) u (4.3) 

where B(X) Is an n-dimensional nonsingular matrix whose coefficients depend 
on the phase coordinates. Equation (1.5) for problem (1.1) - (4.1) Is of the 
form _ 

Inaxu (p, --As-,%)- f,(X) -0 ((4 u) < 1) (11.4) 

From the maximization condition (4.4) we can find the control function u 
as a vector function of the variables x and p and obtain a first-order 
partial differential equation independent of u , as was done In [7]; we obtain 

u = - l/(cBB*p, P) 

Substituting this control function into (4.4) and designating the matix 
BB* as I- , we find an equation of the type (1.7) 
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ux, PI - - b, A4 + v/cr, p, P) - fo (4 == 0 (4.6) 

For the problem under conslderatlon Equatlons(2.6) become 

In order to find the function _&, x') it is sufficient to express X+1 
ln.terms of the variables x and X' from (4.7). Rewriting the first 
n-equations from (4.7) In two ways, ye obtain 

By palrwlse scalar multlpllcatlon of the right-hand and left-hand parts 
of these equations, we obtain 

$$-+ l-Ax, &+A+1 (4.9) 

From this quadratic equation we find the root A + 1 satisfying the prob- 
lem and then find the function ~(x, x') by Formula (2.12) 

for I- (I‘-'Ax, As) i+ 0 

p (r x.) = fo(x) (IYc’, AZ) + l/(Pr’, AZ)?% (Pr’, 2’) [i - (PAZ, AZ)] 
t 1 - (r-l Ax, AZ) 

(4. IO) 

for 1 - (r-‘Az, Ax) = 0 

F (r, 2’) = - 
flJ (x) r-1 z’, r’) 

2 (r-1 x’, AZ) (4.11) 

Since the function F(x, x') Is positive definite for any X' If 

1 -- (r-1 Ax, Ar) > 0, 

It follows that the region of controllablllty In an case Includes the lnte- 
rlor of the ellipsoid whose equation Is (r-'Ax, AX9 = 1 * The matrix A is 
here assumed to be nonslngular. We may,polnt out the following geometrical 
Interpretations of the optimum curves of this problem: within the ellipsoid 
(l--'Ax, Ax) = I the optimum trajectories will be the ge>deslcs of Finsler- 
Ian geometry([8]: chapter 10). 

For the problem (1.1) to (4.3), with f(x) -0 in (4.3), we have the 
fmctlon --__y 

F (2, cc’) == v (C (z) z ,I ) 

where C(X) Is the matrix of the positive definite quadratic form in X* . 
In this case the optimum trajectories are the geodesics of Rlemannlan geo- 
metry. 

The author Is grateful to E.A.Barbashin for his comments on the results 
of this article. 
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